Submersible sensors detect bacterial pollution in water

SDSU environmental engineers have found a way to rapidly detect bacterial contamination in water.
SDSU environmental engineers have found a way to rapidly detect bacterial contamination in water. (Pixabay)

Environmental engineers from San Diego State University have adapted existing sensor technology that can detect fluorescence and tweaked it to enable rapid detection of bacteria in the water. They plan to combine this technology with telemetry to transmit contamination alerts in real time, which could have useful implications for water monitoring agencies and government authorities.

According to the researchers, every object has fluorescence that is invisible to the naked eye, but can be detected by special sensors. Bacteria also have similar fluorescence these sensors can detect, which helped the researchers quickly identify contamination.

"We wanted to rapidly identify bacterial contamination, literally in seconds, and be able to watch the intensity increase in real time, using it much like a hand-held instrument," said Natalie Mladenov, water quality researcher and associate professor at San Diego State University "One problem many water managers are aware of is the need to have real time data, and this could be the answer."

Sponsored by Digi-Key

Digi IX20 Secure LTE Router Available for Immediate Shipment from Digi-Key

The IX20 rugged, secure LTE router is a great choice for applications from basic connectivity to industrial-class and security solutions. Its high-performance architecture gives primary and backup WWAN over software selectable multi-carrier LTE.

Mladenov has long been interested in evaluating sensors as early warning alert systems for unanticipated pollution events, both in surface water and at water treatment and reuse facilities. She has previously shown how fluorescence-based sensors can indicate the presence of pollutants in treatment facilities, and this time she set out to explore whether they could be adapted for sewage pollution incidents in surface water.

Most sampling devices being used for this purpose have an incubation period before results are available, but the fluorescence-based sensors she tested can distinguish between bacteria in the water and organic material and plant waste, and relay that data immediately. The study was published March 11 in the Science of the Total Environment.

Mladenov and former undergraduate engineering student Lorelay Mendoza used a portable submersible fluorometer, which comes with a choice of sensors. For bacterial wastewater tracking, they chose a sensor for tryptophan—the same amino acid that makes you sleepy after a turkey dinner—and a humic sensor for background fluorescence tracking.

Mendoza would track weather events and the night before a storm was predicted, she would place the fluorometer in a creek, tracking bacterial contamination during the storm in real time.

"The findings suggest that wastewater was discharged into Alvarado Creek because of a sanitary sewer overflow or some kind of leakage in sewer infrastructure during a storm," Mladenov said. "Sewer lines are old, and many are reaching the end of their useful life."

Mendoza noted the high readings were supported by high E. coli counts, and human-derived pollution was confirmed by measuring caffeine concentrations.

"We hope this research propels the deployment of fluorescence sensors to water bodies for long-term monitoring, because having data is power," Mendoza said. "I would like to see cities and water managers deploy sensors along water streams to detect vulnerabilities in water quality and to reduce the impacts of pollution events when they happen. Without early warning signals, the time between initial contamination and awareness and reaction is longer and will have negative consequences for the environment and aquatic life."

To obtain supporting biological and chemical data, Mladenov collaborated with SDSU professors Matthew Verbyla and Rick Gersberg. Next, she and geography professor Trent Biggs, are teaming up to deploy the fluorescence-based sensor together with a telemetry system to ensure the alert can be received in real time, and will conduct studies in larger water bodies including the San Diego River.

Suggested Articles

Despite recent good news for a chunk of the tech sector, the number of postings for EE jobs has stayed a stubborn 20% below the peak in February.

Sidewalk is designed to allow neighbors to share a wireless network for IoT devices

Expert says energy efficient hardware won’t counter the growth in energy density