Paper-based sensor detects potent nerve toxins

Paper-based sensor detects potent nerve toxins
A sensor developed by U of A chemists turns yellow or green under ultraviolet light depending on how much parathion or paraoxon is present in a sample. (Chris Robidillo, University of Alberta)

A paper-based sensor developed by University of Alberta chemists can detect two potent nerve toxins that have reportedly been used in chemical warfare. The sensor uses silicon-based quantum dots to detect paraoxon and parathion, two powerful toxins that turn the paper sensors yellow or green, depending on the amount of toxin present. 

The researchers reported their findings in a paper titled, “Ratiometric Detection of Nerve Agents by Coupling Complementary Properties of Silicon-Based Quantum Dots and Green Fluorescent Protein,” in ACS Applied Materials & Interfaces. The study also shows that a commercial smartphone application can be used to accurately estimate the amount of the toxins in a sample, which could offer a simpler, faster way to detect them than current methods based on costly instruments and highly trained technicians.

“Paraoxon and parathion are nerve agents that have been used as pesticides,” explained U of A chemist Jonathan Veinot, a co-author on the study with PhD student Christopher Robidillo. 

Sponsored by Digi-Key

Digi IX20 Secure LTE Router Available for Immediate Shipment from Digi-Key

The IX20 rugged, secure LTE router is a great choice for applications from basic connectivity to industrial-class and security solutions. Its high-performance architecture gives primary and backup WWAN over software selectable multi-carrier LTE.

RELATED:  Paper-based sensor monitors food iron levels

Since parathion was developed in 1947, most countries around the world have stopped using it as a pesticide, said Robidillo, citing research showing it has also been linked with cancer and birth defects. 

Paraoxon, a similar compound that is created when parathion is broken down by enzymes in the body, is considered 50 times more toxic. It is thought to have been used in chemical warfare during the 1970s in what is now Zimbabwe, and later by the apartheid regime in South Africa as part of its chemical weapons program. 

The researchers built the sensors by combining a green fluorescent protein with silicon-based quantum dots that emit red light. When exposed to paraoxon or parathion, the mixture no longer emits red light, causing the sensor to turn various shades of yellow or green under fluorescent light. 

“The sensors can be used to test environmental samples and detect the presence of the nerve agents,” added Robidillo. “Using a smartphone application, it is possible to estimate the amount of nerve agent present; this is more reliable than simple visual evaluation.” 

Veinot added the results suggest that similar sensors could be tailored to test for other toxins as well. 

Suggested Articles

Annual growth of 15% is expected for next decade according to Future Market Insights

New tech relies on time-of-flight sensor tech used in HoloLens combined with CMOS

With the rise of wearables, electronics are making their way into challenging environments unimaginable before, making protective coatings essential.