Electronic nose sniffs out air quality, diagnoses disease

Oregon State U creating electronic nose
Oregon State University researchers are developing an electronic nose to monitor air quality, detect safety threats, and diagnose diseases by measuring gases in a patient’s breath. (Oregon State University)

Oregon State University researchers are developing an electronic nose to monitor air quality, detect safety threats, and diagnose diseases by measuring gases in a patient’s breath.

Recently published research led by Cory Simon, assistant professor of chemical engineering in the OSU College of Engineering, in collaboration with chemical engineering professor Chih-Hung Chang, focused on materials known as metal-organic frameworks, or MOFs.

The researchers looked at a critical yet understudied hurdle in using MOFs as gas sensors: Out of the billions of possible MOFs, how do you determine the right ones for building the optimal electronic nose?

Fierce AI Week

Register today for Fierce AI Week - a free virtual event | August 10-12

Advances in AI and Machine Learning are adding an unprecedented level of intelligence to everything through capabilities such as speech processing and image & facial recognition. An essential event for design engineers and AI professionals, Engineering AI sessions during Fierce AI Week explore some of the most innovative real-world applications today, the technological advances that are accelerating adoption of AI and Machine Learning, and what the future holds for this game-changing technology.

RELATED: Air Force to test SWIR sensors that see through smoke, haze

MOFs have nanosized pores and selectively adsorb gases, similar to a sponge. They are ideal for sensor arrays because of their tunability, enabling engineers to use a diverse set of materials that allows an array of MOF-based sensors to deliver detailed information.

Depending on which components make up a gas, different amounts of the gas will be adsorbed in each MOF. That means the composition of a gas can be inferred by measuring the adsorbed gas in the array of MOFs using micro-scale balances.

The challenge is that all MOFs adsorb all gases. Human noses navigate this same problem by relying on about 400 different types of olfactory receptors. Much like the MOFs, each olfactory receptor is activated by many different odors, and each odor activates many different receptors; the brain parses the response pattern, allowing people to distinguish a multitude of different odors.

“In our research, we created a mathematical framework that allows us, based on the adsorption properties of MOFs, to decide which combination of MOFs is optimal for a gas sensor array,” Simon said. “There will inevitably be some small errors in the measurements of the mass of adsorbed gas, and those errors will corrupt the prediction of the gas composition based on the sensor array response. Our model assesses how well a given combination of MOFs will prevent those small errors from corrupting the estimate of the gas composition.”

Though the research was primarily mathematical modeling, the scientists used experimental adsorption data in real MOFs as input, Simon said, adding that Chang is an experimentalist “who we are working with to make a real-life electronic nose to detect air pollutants.”

“We are currently seeking external funding together to bring this novel concept into physical realization,” Simon said. “Because of this paper, we now have a rational method to computationally design the sensory array, which encompasses simulating gas adsorption in the MOFs with molecular models and simulations to predict their adsorption properties, then using our mathematical method to screen the various combinations of MOFs for the most accurate sensor array.”

Suggested Articles

Hydrogen refueling stations are limited in the U.S., restricting interest in use of fuel cell electric cars


Silicon Labs is providing the BT module needed for detecting proximity with another Maggy device

Test automation won't fix everything, but can help, according to an automation engineer. Here are five problems to avoi to improve chances of success