GE Nanotechnology Enables Advanced Thermal Imaging

NISKAYUNA, NY /BUSINESS WIRE/ -- Taking heat detection to a new level of sensitivity and speed, a team of scientists at GE Global Research, the technology development arm for the General Electric Co., announced new bio-inspired nanostructured systems that could outperform thermal imaging devices available today. The discovery adds to a growing list of new capabilities that GE researchers have developed through their studies of Morpho butterfly wings. To see a demonstration of the discovered thermal response in butterfly scales, see the following video.

GE scientists are exploring many potential thermal imaging and sensing applications with their new detection concept, such as medical diagnostics, surveillance, nondestructive inspection, and others, where visual heat maps of imaged areas serve as a valuable condition indicator. Some examples include:

  • Thermal imaging for advanced medical diagnosis to better visualize inflammation in the body and understand changes in a patient's health earlier
  • Advanced thermal vision to see things at night and during the day in much greater detail than what is possible today
  • Fire thermal imaging to aid firefighters with new handheld devices to enhance firefighter safety in operational situations
  • Thermal security surveillance to improve public safety and homeland protection
  • Thermal characterization of wound infections to facilitate early diagnosis

"The iridescence of Morpho butterflies has inspired our team for yet another technological opportunity. This time, we see the potential to develop the next generation of thermal imaging sensors that deliver higher sensitivity and faster response times in a more simplified, cost-effective design," said Dr. Radislav Potyrailo, Principal Scientist at GE Global Research, who leads GE's bio-inspired photonics programs. "This new class of thermal imaging sensors promises significant improvements over existing detectors in their image quality, speed, sensitivity, size, power requirements, and cost."

Dr. Potyrailo added, "GE's bio-inspired design also promises exciting new thermal imaging applications, such as in advanced medical diagnostics to detect changes in a person's health or in thermal vision goggles for the military to allow soldiers to see things during the day and at night with much greater specificity and detail."

Thermal imaging is used in a variety of industrial, medical, and military applications today, ranging from the noninvasive inspection of industrial components and medical diagnostics to military applications, such as thermal vision goggles and others. GE's new bio-inspired nanostructured system could enable an even broader application of thermal imaging by improving the manufacturability, image resolution, sensitivity, and response time of new systems. These advances would enable the production of more advanced systems at much lower cost.

Dr. Potyrailo assembled a research team that studied the origin and details of thermal response of Morpho butterfly wing scales. The team included Professor Helen Ghiradella, from the Department of Biological Sciences, University at Albany; and Andrew Pris, Yogen Utturkar, Cheryl Surman, William Morris, Alexey Vert, Sergiy Zalyubovskiy, and Tao Deng from GE Global Research.

The discovery is a result of extensive studies conducted at GE Global Research on the technological applications of photonic properties of Morpho butterfly wing scales led by Dr. Potyrailo. Dr. Potyrailo noted that his multi-organization teams are also working on the fabrication of photonic nanostructures inspired by Morpho butterfly wing scales for highly selective vapor sensing applications, with commercial applications that could reach the market within the next five years.

About GE Global Research
GE Global Research is the hub of technology development for all of GE's businesses. Its scientists and engineers redefine what's possible, drive growth for its businesses, and find answers to some of the world's toughest problems.

GE innovates 24 hours a day, with sites in Niskayuna, New York; Bangalore, India; Shanghai, China; and Munich, Germany, with a fifth global research facility to open in Rio de Janeiro, Brazil in 2012. Connect with its technologists online and at Twitter.