Real-Time Control Drives Efficiency Into Dry Bulk Handling Operations

Real-time control drives efficiency into dry bulk handling operations

By Tony Ingham of Sensor Technology Ltd.

Back When

Fifty years ago, ships were loaded and unloaded manually, so each port employed a small army of strong men who worked long and hard as soon as a ship came in. However, the handling operations protracted and so the ships were in harbor for extended periods. It is also worth noting that back then, health and safety legislation was virtually unknown and it was practically impossible to accurately account for the whole cargo.

However, dockside operations have long since changed for the better and even in developing countries harbors now bristle with cranes, elevators and loaders.

There is a simple rule that drives the development of such technologies – a ship at sea is earning its owners money; a ship in port is costing its owners money. Therefore, shipping companies drive harbor operators to constantly improve their services and will transfer their loyalty to new docks if necessary. Quite simply, rapid loading and unloading are critical to the success of a shipping company and so dockside technology continues to develop to provide ever more speed and efficiency.

So, from manual operations, cranes, elevators, augers and loaders were developed, each one suited to a handling a different product - grain, coal, gravel or chemicals. While these were motor driven, they were controlled by human operators – and no matter how skilled the operators became, they had no real way of telling if they were optimizing processing and working efficiently. Then computers were brought in to automate the calculations and decision making and efficiency took a turn for the better; further, the computers could automatically collect operational data and convert it into commercial information for billing customers.

Today, another new generation of technologies is emerging and it is taking bulk cargo handling operations to new levels of efficiency, accuracy and flexibility. Put simply, robustly built sensors are being installed on dockside handling equipment; these constantly measure operational parameters of the machinery in ‘real time’ and feed live information back to a controlling computer, which can adjust operations on the fly so that efficiency is maintained. Further, all this data can be collated to provide billing information, and analyzed to determine how much work the machinery has done so that pre-emptive maintenance can be scheduled for minimal disruption to normal operations.

Unloaders come in a number of different designs, each suited to different materials. The core technologies include bucket wheels, flighted vertical conveyors and elevators, augers, horizontal belt conveyors and pneumatic systems. The mechanical principles of each of these are self-explanatory, but it is essential that control and monitoring of this equipment are maintained at all times to both ensure trouble-free operation and to calculate the weight of cargo being unloaded.

New Sensors

The fundamental parameter to be measured is load (which can also be called weight or mass). The weighing scale was invented in ancient times, but is of no use in modern bulk handling operations; a load cell is required. This is an electronic sensor (in a robust housing if it is to be used in a harsh working environment) that constantly sends a signal to a remote computer proportional to the load being experienced at every moment in time.

As such, it is simple to see that a load sensor is very useful on a crane; each load is weighed and the figures added up to give the total amount of cargo lifted.

However a load cell is not appropriate on a conveyor, auger, or other equipment that works by constantly having a quantity of cargo ‘in flight’. The amount in flight will be approximately constant, and the duration of the operation will determine the total amount of material handled. For this type of handling system you measure the torque of the motor’s drive shaft.

Torque is in effect a measure of the amount of power being transmitted in a rotational direction. A simple example that aids understanding is riding a bike: to accelerate or go uphill you need to pedal harder – or apply more torque via your leg muscles. The same principle applies with conveyors, augers, etc.; the more heavily loaded they are the more power the drive motor needs to supply and therefore the total amount of power supplied over time is proportional to the total load handled.

It is increasingly common to fit torque and/or load sensors to handling equipment to obtain a real time measurement of their performance. They constantly feed information to the control computer, which can then adjust machine settings to optimize operations. The computer also collects the data for commercial purposes and maintenance planning.

As noted earlier these sensors are mounted inside a strong housing so that they can withstand the rigors of dockside life. Significantly, they must transmit their data back to the control computers; the normal way to do this would be with electrical wiring, but that could not be expected to last long in the demanding environment of a busy port. One solution would be to use armored cable and to route via the most benign areas; however, a better solution is wireless transmission of the signals.

Now, with over 20 years of research and development into digital non-contact torque monitoring, Sensor Technology UK Ltd is at the forefront of an important enabling technology. Its TorqSense transducer is based on the patented technology of measuring the resonant frequency change of surface acoustic waves (SAWs) generated by rotating shafts. It's a proven technology that has solved torque-measuring challenges in a host of industries.

TorqSense torque sensors use two tiny SAW detectors made of ceramic piezoelectric material containing frequency resonating combs. These are securely mounted onto the drive shaft at a 90-degree angle to one another. As the torque increases, the rotating shaft twists very slightly along its length which causes one comb to expand and the other to contract in proportion to the torque being experienced.

An adjacent pickup device emits radio waves, using the unrestricted 2.4 GHz waveband, towards the SAWs. The combs reflect them back, but because one comb is expanded and the other is contracted, they return at two different frequencies. The difference in frequency of the reflected waves is proportional to the torque at any moment in time. This arrangement means there is no need to supply power to the SAWs, so the sensor is non-contact and wireless.

In reality, TorqSense measurement together with the digital outputs it offers is often the only practical way to measure torque in a demanding working environment. And once you are collecting torque data this way and have fed it into a computer, you are well on the way to sophisticated real-time control of complex processes.

Originally developed to solve a particular challenge in the automotive industry, TorqSense is now widely used throughout a range of industries including many bulk solid handling operations, liquid pumping applications, in mixers, in the nuclear industry, for testing aerospace components and running drug trials. It is applicable to all sizes of torque measurement tasks, from dispensing minute amounts of active pharmaceutical ingredients, through stirring industrial quantities of cook-chilled curries, to modelling storm and flood water flows –and indeed monitoring the tonnage of bulk solid cargo loading and unloading.

This innovative method of measuring torque is bringing distinct advantages to handling dry bulk products. A process that was once regarded as very difficult to monitor can now reap the same benefits as many other industrial processes, enabling operations to be optimized so that the highest levels of productivity can be achieved at the lowest cost.

Torque and Load

Once TorqSense was fully developed, Sensor Technology found itself very busy working on project after project. Because torque is a fundamental parameter, it is used in many situations across the full spectrum of industrial sectors. Sensor Technologies could spend one day talking to bakers about dough mixing, the next at a pharmaceutical plant dispensing active ingredients to microgram levels of accuracy, a third day working on a quarry conveyor or a dredger, and then move onto a dockside crane application, a robot arm or an electric vehicle drive.

In fact, the company was so busy that it could not find time to develop its next idea until about five years ago. It was only logical to adapt the RF technique for use with straight-line load monitoring, such as is required by cranes and hoists as they lift cargo to and from ships. This would bring the wireless advantages to all types of bulk solid handling plant and allow all cargo handling techniques used in any given situation to be monitored by the same system, which would lead to significant savings in management time and costs as multiple reports do not have to be integrated.

As an amusing aside, it is notable that while LoadSense can measure any straight line load, can be scaled to work with any size of force and works horizontally and diagonally as well as vertically, it was actually developed for a bulk minerals application (of sorts). In fact it was first used to weigh multiple loads of stone being carried as an underslung cargo by helicopter. The stone was being used to build hikers’ paths in the UK’s most visited National Park, the Peak District. For airborne applications, LoadSense is integrated with a GPS (global positioning system) for pinpointing drop zones and totalizing flight distances.

Back in the world of dry bulk handling, we can conclude by saying that the modern world requires rapid and efficient transportation of goods from continent to continent. As well as speed of handling, accurate records are also essential. TorqSense and its sister product LoadSense allow real time data to be collected, constantly updated and instantly converted into the critical information required for efficient logistics.

For more details:

Sensor Technology Ltd.

+44 (0)1869 238400 

[email protected]  

Suggested Articles

Low-level autonomy vehicles will grow by 11% a year and there won’t be any produced at the highest autonomy before 2024, according to IDC.

Nvidia’s GPU Cloud hub will be integrated into vSphere, Cloud Foundation and Tanzu

Analyst firm sees yearly growth in use of 5G wireless used in comms and guidance for vehicles despite pandemic slowdown