One Weird State

A polycrystalline material (NiGa2S4) recently synthesized by Japanese researchers is believed to exhibit a "liquid" magnetic state at extremely low temperatures. Such a state is created when magnetic spins fluctuate in a disorderly, fluid-like configuration that do not produce an overall magnetic force. The triangular arrangement of the nickel gallium sulfide's atoms appears to prevent alignment of these magnetic spins. First proposed 30 years ago, this bizarre state might be related to the way electrons flow without resistance in superconducting materials.

Researchers at Johns Hopkins, the University of Maryland, and NIST used X-rays and neutron probes to examine a sample of the new material. NIST's disk chopper spectrometer pulses neutrons of identical wavelength through a sample of interest; 900 detectors in a semicircle then determine where and when the neutrons emerge, helping to map electron spins.

Contact Kelly Talbott, National Institute of Standards and Technology, Gaithersburg, MD; 301-975-3090, [email protected], www.nist.gov.

Free Newsletter

Like this article? Subscribe to FierceSensors!

The sensors industry is constantly changing as innovation runs the market’s trends. FierceSensors subscribers rely on our suite of newsletters as their must-read source for the latest news, developments and analysis impacting their world. Register today to get sensors news and updates delivered right to your inbox.
Read more on

Suggested Articles

QuickLogic Corporation and Nuance Communications are partnering to deliver low power wake word and voice command technology for power-sensitive applications,…

New Apple Watch and larger iPad also on tap

The technology and business issues of hybrid and electric vehicles will be open for debate at the Electric and Hybrid Vehicle Technology Expo and Battery Show…