Microsensor Measures Shear Stress In Wind Tunnels

IC² claims it has developed an industry-first microsensor capable of directly measuring time-resolved wall shear stress in wind tunnel testing.  It says accurately measuring wall shear stress has historically been very difficult and existing sensor technology cannot accurately measure wall shear stress.  The result of two decades of research and testing, the company’s DirectShear Sensors measure wall shear stress directly and accurately for both mean and fluctuating measurements.

 

The high-bandwidth, high-resolution, silicon-micromachined differential capacitive shear stress sensors directly measure wall shear stress through a micromachined (MEMS) sensing head with backside contacts. This approach enables features that include:

Fierce AI Week

Register today for Fierce AI Week - a free virtual event | August 10-12

Advances in AI and Machine Learning are adding an unprecedented level of intelligence to everything through capabilities such as speech processing and image & facial recognition. An essential event for design engineers and AI professionals, Engineering AI sessions during Fierce AI Week explore some of the most innovative real-world applications today, the technological advances that are accelerating adoption of AI and Machine Learning, and what the future holds for this game-changing technology.
  • Direct capacitive transduction to ensure time-resolved, accurate measurements and remove the need for a unique calibration between heat transfer and shear stress.
  • Hydraulically smooth sensor with backside contacts to eliminate any disturbances to the flow.
  • Micromachining to enable high spatial resolution and high-performance operation, offering bandwidths up to 20 kHz and dynamic ranges up to 110 dB. 

Originally developed for NASA, the sensors are now commercially available.  A suite of sensor models is available for varying applications and requirements such as:

  • Instrumentation-grade skin friction measurement in subsonic and transonic wind tunnels
  • Fundamental scientific research - aerodynamic drag, turbulence, etc.
  • Detection of flow separation 

For more information, specs, and prices, checkout the DirectShear Sensors product portal

 

IC²

Gainesville, FL

352-283-8110

[email protected]

[email protected]

http://www.thinkic2.com

Suggested Articles

Iowa State University researchers are working with NSF grant

Brain Corp. reported a sharp increase in autonomous robot usage in 2Q

Nvidia DGX accelerators helped train system from 150,000 chest X-rays with inference results in less than a second