Microsemi Achieves MIL-STD-883 Class B Qualification for its RTG4 High-Speed Radiation-Tolerant FPGAs

ALISO VIEJO, CA -- Microsemi Corporation announces its RTG4™ high-speed signal processing radiation-tolerant field programmable gate arrays (FPGAs) have achieved MIL-STD-883 Class B qualification, meeting the industry's standard for qualifying microelectronic devices suitable for use within aerospace and defense electronic systems. Microsemi also announced the availability of RTG4 space flight models in various screening flows including the B Flow and the Extended Flow (E Flow), providing additional screening options and a higher level of reliability assurance required in many critical space applications.

Microsemi is a Qualified Manufacturers List (QML)-certified manufacturer of high reliability FPGAs for space applications. Meeting the stringent standards of the MIL-STD-883 Class B qualification paves the way for Microsemi's RTG4 FPGAs to secure QML Class Q and QML Class V qualifications in the near future. Adding Microsemi's E Flow to these devices offers additional testing for space applications requiring a screening level beyond the MIL-STD-883 Class B standard.

To achieve the new qualification, Microsemi's RTG4 FPGAs passed a series of environmental tests to determine resistance to deleterious effects of natural elements and conditions surrounding defense and space operations, as well as mechanical and electrical tests. RTG4 units from multiple wafer lots successfully completed 1,000-hour high temperature life tests, proving the high reliability of RTG4 flash cells in extreme conditions.

RTG4 FPGAs bring new capabilities to the market and help solve satellite signal processing congestion, while having high reliability as shown in the recent MIL-STD-883 Class B qualification. According to Euroconsult's 2015 report titled, "Satellites to Be Built and Launched by 2024," 60 percent more satellites will be launched by 2024 versus the past decade. This increase is driven primarily by civilian government agencies as established space countries replace and expand their in-orbit satellite systems and more countries acquire their first operational satellite systems.

About Microsemi's RTG4 FPGAs and Development Kit

RTG4 FPGAs bring new capabilities to the market and combine a wealth of features with the highest quality and reliability to meet the increasing demands of modern satellite payloads. The devices feature reprogrammable flash configuration, making prototyping easier for customers. RTG4's reprogrammable flash technology offers complete immunity to radiation-induced configuration upsets in the harshest radiation environments, without the configuration scrubbing required with SRAM FPGA technology. RTG4 supports space applications requiring up to 150,000 logic elements, and each includes a LUT4 and a flip-flop with built-in triple module redundancy (TMR). The devices also features total ionizing dose (TID) beyond 100 kilorads, as well as high system performance of up to 300 MHz without single event transient (SET) mitigation.

The RTG4 Development Kit features Microsemi's Libero SoC Design Suite, offering high productivity with its comprehensive, easy to learn, easy to adopt development tools for designing with Microsemi's radiation-tolerant FPGAs. The suite integrates industry standard Synopsys SynplifyPro synthesis and Mentor Graphics ModelSim simulation with best-in-class constraints management, debug capabilities and secure production programming support.

RTG4 is Microsemi's latest development in a long history of radiation-tolerant FPGAs that are found in many NASA and international space programs.

For more information, visit:

Suggested Articles

Low-level autonomy vehicles will grow by 11% a year and there won’t be any produced at the highest autonomy before 2024, according to IDC.

Nvidia’s GPU Cloud hub will be integrated into vSphere, Cloud Foundation and Tanzu

Analyst firm sees yearly growth in use of 5G wireless used in comms and guidance for vehicles despite pandemic slowdown