MEMS Tech Mimics Human Organs

Sensera, a provider of MEMS devices, is adapting its technology for innovative applications in bioengineering. The company’s Micro-Electro-Mechanical Systems (MEMS) technology is now being used at Harvard University in the creation of microfluidic devices that mimic the functions of living human organs, including the lung, intestine, kidney, skin, bone marrow, and blood-brain barrier. Dr. Richard Novak, Senior Staff Engineer at Harvard University’s Wyss Institute for Biologically Inspired Engineering reports, “These microchips, called ‘organs-on-chips’, offer a potential alternative to traditional animal testing. Each organ-on-chip comprises a polymeric membrane that contains hollow channels lined by living human cells. The hollow, microfluidic channels carry fluids in a way that accurately mimics various functions of the human body, including the respiratory, circulatory and digestive systems. Mechanical forces can be applied to emulate the physical microenvironments of living organs, including breathing motions in the lung and peristalsis-like deformations in the intestine.”

 

Sensera provides molds to manufacture the polymeric membranes that are assembled in the organ-on-a-chip microfluidic devices. Ralph Schmitt, CEO of Sensera, said, “Manufacturing these molds is a new challenge for us. We’ve had to adapt our traditional MEMS processes and implement a very stringent quality management system that meets the demands of biomedical applications.”

Free Newsletter

Like this article? Subscribe to FierceSensors!

The sensors industry is constantly changing as innovation runs the market’s trends. FierceSensors subscribers rely on our suite of newsletters as their must-read source for the latest news, developments and analysis impacting their world. Register today to get sensors news and updates delivered right to your inbox.

 

“Sensera has been able to deliver consistent quality while meeting challenging specifications,” Dr. Novak added. The success of Sensera’s involvement in the microfluidic device market is supported by the fact that it is ISO 9001 certified and is working towards its ISO 13485 certification. “These types of MEMS-based products are exciting,” Schmitt said. “It’s a high-growth market space in precision medical technology. We are pleased to be able to offer such unique capabilities for customers impacting the health of people worldwide.” For more insights, visit Sensera.

Read more on

Suggested Articles

Google CEO Sundar Pichai said EU's GDPR could be starting point for AI regulation, but urged countries to cooperate for a standard approach.

Apple's Lighting cable may be phased out, according to an article on the BBC site.

IP theft and technology transfer are key components of eight-part deal