Maximize Dynamic Range in Spectroscopy Systems

Maximize Dynamic Range in Spectroscopy Systems

Programmable-Gain Transimpedance Amplifiers (TIAs) minimize noise while maintaining high bandwidth

Precision instrumentation systems that measure physical properties using a photodiode or other current-output sensor often include a transimpedance amplifier (TIA) and a programmable-gain stage to maximize dynamic range. This article uses a real-world example to show the benefits and challenges of implementing a single-stage programmable-gain TIA to minimize noise while maintaining high bandwidth and high accuracy.

Transimpedance amplifiers are essential building blocks in any system that measures light. Many chemical analysis instruments, such as ultraviolet-visible (UV-VIS) or Fourier transform-infrared (FT-IR) spectroscopes, rely on photodiodes to accurately identify chemical compounds. These systems must measure a wide range of light intensity. For example, a UV-VIS spectroscope can measure opaque samples, such as used motor oil, or transparent substances, such as ethanol. In addition, some substances have strong absorption bands at certain wavelengths, while remaining almost transparent at other wavelengths. Instrument designers often add several programmable gains to the signal path to increase the dynamic range.

Want the whole story? CLICK HERE

Suggested Articles

MarketsandMarkets says the low-light imaging market is expected to grow from $10.04 billion in 2019 to $18.36 billion by 2024.

SiC can make medical devices more perceptive, it can make electronics more energy-efficient, and it can help sensors perform in higher temperatures.

Components supplier CTS Corporation has acquired temperature sensor supplier Quality Thermistor, Inc. (QTI), for $75 million in cash.