MATLAB Adds Sensor Fusion and Tracking Toolbox

MathWorks introduces Sensor Fusion and Tracking Toolbox, which is now available as part of MATLAB Release 2018b. The toolbox provides algorithms and tools to maintain position, orientation, and situational awareness. The toolbox extends MATLAB based workflows to help users develop accurate perception algorithms for autonomous systems.

 

Engineers working on the perception stage of autonomous system development need to fuse inputs from various sensors to estimate the position of objects around these systems. Now, they can use algorithms for localization and tracking, along with reference examples within the toolbox, as a starting point to implement components of airborne, ground-based, shipborne, and underwater surveillance, navigation, and autonomous systems. The toolbox provides a reusable environment that can be shared across developers. It provides capabilities to simulate sensor detections, perform localization, test sensor fusion architectures, and evaluate tracking results.

Free Newsletter

Like this article? Subscribe to FierceSensors!

The sensors industry is constantly changing as innovation runs the market’s trends. FierceSensors subscribers rely on our suite of newsletters as their must-read source for the latest news, developments and analysis impacting their world. Register today to get sensors news and updates delivered right to your inbox.

 

Sensor Fusion and Tracking Toolbox includes:

  • Algorithms and tools to design, simulate, and analyze systems that fuse data from multiple sensors to maintain position, orientation, and situational awareness
  • Reference examples that provide a starting point for airborne, ground-based, shipborne, and underwater surveillance, navigation, and autonomous systems
  • Multi-object trackers, sensor fusion filters, motion and sensor models, and data association algorithms that can be used to evaluate fusion architectures using real and synthetic data
  • Scenario and trajectory generation tools
  • Synthetic data generation for active and passive sensors, including RF, acoustic, EO/IR, and GPS/IMU sensors
  • System accuracy and performance standard benchmarks, metrics, and animated plots
  • Deployment options for simulation acceleration or desktop prototyping using C-code generation

 

Learn more, download a free trial.

Suggested Articles

OmniVision's new OX01F10 SoC module provides automotive designers with a small form factor with low-light performance, ultra-low power and reduced cost.

Several industry leaders have formed a QSFP-DD800 Multi-Source Agreement (MSA) Group to expedite development of high-speed, double-density, quad small form…

NXP Semiconductors N.V. has announced its secure fine ranging chipset, SR100T, to achieve precise positioning performance for next-generation UWB-enabled…