Learn How To Measure Dynamic Tilt With An IMU

Why would you want to measure the dynamic tilt angle on a vehicle? Consider a classic example of a plane in the clouds.  The pilot cannot see the ground, nor can he or she trust their instincts because they will feel a false gravity when the aircraft is turning. This means they need a dynamic tilt sensor which, in an aircraft, is called a vertical gyro or the artificial horizon. Similar technology is used in automobiles.


With cars getting smarter, and evolving to autonomous navigation, there is a real need for accurate dynamic orientation data of the vehicle. Orientation is just another way of saying dynamic tilt and heading

Fierce AI Week

Register today for Fierce AI Week - a free virtual event | August 10-12

Advances in AI and Machine Learning are adding an unprecedented level of intelligence to everything through capabilities such as speech processing and image & facial recognition. An essential event for design engineers and AI professionals, Engineering AI sessions during Fierce AI Week explore some of the most innovative real-world applications today, the technological advances that are accelerating adoption of AI and Machine Learning, and what the future holds for this game-changing technology.


The video below, shows how to integrate an inertial measurement unit (IMU) for dynamic tilt and orientation measurement. The algorithms must combine both acceleration and angular rate measurement. Using an extended Kalman filter is a good way to use acceleration to correct drift of angular rate measurement and provide an absolute reference.



Mike Horton, CTO of ACEINNA, instructs, “OpenIMUT is a first of its kind, professionally supported, open-source GPS/GNSS-aided inertial navigation software stack for low-cost precise navigation applications. OpenIMU enables advanced, easy-to-deploy localization and navigation algorithm solutions for a fraction of the time and cost of traditional methods.  OpenIMU's combination of open-source software and low-cost hardware enables rapid development of advanced solutions for drones, robotics, and autonomous applications.” 


The OpenIMU Development hardware development kit includes:

  • JTAG-pod, precision mount fixture
  • EVB
  • An OpenIMU300 module


The OpenIMU module features ACEINNA’s 5 °/Hr, 9-axis gyro, accelerometer, and magnetometer sensor suite with a 180-MHz ARM Coretex floating-point CPU.   The IMU comes in a 24 mm x 37 mm x 9.5 mm module that operates from 2.7 to 5.5 Vdc.


The freely downloadable stack includes:

  • FreeRTOS-based data collection and sampling engine
  • Performance-tuned, real-time, navigation-grade GPS/INS Kalman Filter library
  • Free IDE/compiler tool chain based on Visual Studio Code
  • JTAG debugging for debugging code loaded on IMU
  • Data logging, graphing, Allen Variance plots, and maps,
  • Extensive documentation
  • Robust simulation environment with advanced sensor error models


For more information including a datasheet and pricing, visit the ACEINNA developer website.



Andover, MA


[email protected]  




Suggested Articles

Three companies of vastly different sizes—Infinion, ams AG and Velentium-- talk about their work with various tech to address the COVID-19 crisis

A scientist at ams AG describes a new COVID-19 test kit that is inexpensive and relies on an ams chip that provides spectral sensing.

Fact.MR sees global growth for current sensors at 8% a year through 2030. The situation for ADAS sensors is bleak for now, but up over a decade.