Learn How To Maximize Dynamic Range in Spectroscopy Systems

Precision instrumentation systems that measure physical properties using a photodiode or other current-output sensor often include a transimpedance amplifier (TIA) and a programmable-gain stage to maximize dynamic range. This article uses a real-world example to show the benefits and challenges of implementing a single-stage programmable-gain TIA to minimize noise while maintaining high bandwidth and high accuracy.

Transimpedance amplifiers are essential building blocks in any system that measures light. Many chemical analysis instruments, such as ultraviolet-visible (UV-VIS) or Fourier transform-infrared
(FT-IR) spectroscopes, rely on photodiodes to accurately identify chemical compounds. These systems must measure a wide range of light intensity. For example, a UV-VIS spectroscope can measure opaque samples, such as used motor oil, or transparent substances, such as ethanol. In addition, some substances have strong absorption bands at certain wavelengths, while remaining almost transparent at other wavelengths. Instrument designers often add several programmable gains to the signal path to increase the dynamic range.

Read the whole story at http://www.sensorsmag.com/adi-white-paper-download
 

Suggested Articles

4D imaging radar helps cars see objects better than before, including bridge and tunnel clearances

Siemens has built rugged industrial PCs on the new Atom x6000E series to add graphics for machine vision on the shop floor

Sidewalk is designed to allow neighbors to share a wireless network for IoT devices