Learn How To Maximize Dynamic Range in Spectroscopy Systems

Precision instrumentation systems that measure physical properties using a photodiode or other current-output sensor often include a transimpedance amplifier (TIA) and a programmable-gain stage to maximize dynamic range. This article uses a real-world example to show the benefits and challenges of implementing a single-stage programmable-gain TIA to minimize noise while maintaining high bandwidth and high accuracy.

Transimpedance amplifiers are essential building blocks in any system that measures light. Many chemical analysis instruments, such as ultraviolet-visible (UV-VIS) or Fourier transform-infrared
(FT-IR) spectroscopes, rely on photodiodes to accurately identify chemical compounds. These systems must measure a wide range of light intensity. For example, a UV-VIS spectroscope can measure opaque samples, such as used motor oil, or transparent substances, such as ethanol. In addition, some substances have strong absorption bands at certain wavelengths, while remaining almost transparent at other wavelengths. Instrument designers often add several programmable gains to the signal path to increase the dynamic range.

Read the whole story at http://www.sensorsmag.com/adi-white-paper-download

Suggested Articles

VLSI also says chip shipments are down 20% over eight-week period

Large tech conferences including CES have set event dates for early 2021, about the time vaccines will emerge

Aside from good internet access, work-from-home amid COVID-19 sometimes boils down to celebrating our humanity.