How Do You Handle A Thirsty Mob? Desalination Of Course

According to IDTechEx’s report titled “Desalination: Off Grid Zero Emission 2018-2028”, off grid zero emission desalination will be a rapidly growing market. It alleges the world supply of fresh water is thin and continuing to evaporate, and will run out. For example, the researchers point out that India’s water table drops around 0.3 meters a year due to a growing population. Another example, barren farms of Syria show what happens when all the ground water is extracted.

 

Interestingly, the study reports that recycling of water is practiced only by a tiny percentage of the world’s countries. Therefore, it predicts that, coming from very little in 2018, off grid zero emission desalination will be a $35 billion market in 2028. The report looks at new desalination and electricity technologies that will boost performance and reduce cost, those reducing what is usually the largest cost element: electrical power. They include photovoltaics and wind energy as well as combinations of harvesting technologies for security of supply and minimizing storage.

 

All this means that desalination gets more competitive even if its cost stays still: the competition such as cleaning river water or lakes or sucking up dying aquifers is either disappearing or getting more expensive. Desalination can work on salt lakes: the Caspian Sea has 70% of global inland salt water yet it is almost surrounded by water stressed regions. Inland brackish water is 100 times as abundant as salt lakes and desalination can tackle it using much less energy than is needed for seawater.

 

So, what is not to like? Well in the past desalination has been so expensive that it has been last resort, with Dubai, Saudi Arabia, Israel and Kuwait getting all or most of their water that way because they have no alternative. Desalination plants have got bigger and bigger with costs rising past the $1 billion level and they have often damaged oceanic wildlife by sucking in fish eggs and so on and spewing out concentrated brine in a poorly controlled way that kills wild life.

 

In most countries, the most competitive desalination technology remains reverse osmosis using electric pumps where electricity cost can be dominant. Desalination plants have almost always satisfied their huge appetite for electricity by fossil fuel plants on site or behind their grid connection warming the globe with carbon dioxide, some emitting localized poisonous gases as well.

 

However, the good news is that all this is being tackled very successfully. Saudi Arabia has the world’s largest operating desalination plant and it burns a lot of gas as does the 140MW one in Israel. However, Saudi Arabia is going entirely solar. The cooler country, China, is starting to need a lot of desalination so it is deploying a lot of wind + solar and solar alone desalination plants with zero emission. In fact, as with grid supply, the zero emission options are rapidly becoming lower cost than burning fossil fuels. Yes, there are other options such as biosaline agriculture giving kelp to samphire and quinoa, but all are needed because we must drink too.

Desalination is practiced in about 150 countries, with many more joining the fray. Demand is now so varied that plants of all sizes are now needed and in numbers and later volume of water, the medium and small ones may show greatest growth in future despite several monsters being planned. Economy of scale can be more than a matter of making ever larger plants. Indeed, these are already into diminishing returns. Economy of scale can also mean mass production of standard medium and small sized plants and that work has scarcely begun.

 

With cyberattacks and weather shutting down grids in and their electricity prices typically rising, the dropping costs of off grid zero emission electricity are increasingly preferred, with the user enjoying both predictability and rapid adjustment.

 

The 160-page IDTechEx report covering 79 organizations clarifies such things as the increasing interaction and integration in this emerging industry. Desalination plants will refill the Dead Sea while providing drinking water and many will provide spare electricity for communities. Some will be part of village, island and ship microgrids. How many islands, which countries, and what is best practice are pinpointed. 

 

The increasingly popular mobile desalinators will sometimes double as transport, provide electricity for farm robots not just water and some will replace increasingly unaffordable diesel gensets expensively modified to meet new emissions laws and involving yesterday’s crippling fuel supply systems. There are many strategies for avoiding those expensive, dangerous, short lived batteries in desalination and actual examples are given.

 

If changing wine into water is not an option, check out the IDTechEx report.