Future of Smart Grid Market Reviewed in 2014 Research Report

DALLAS, TX -- ReportsnReports.com adds The Future of the Smart Grid 2014 market research report of 79 pages to the energy and power segment of its online industry intelligence and data library. This research provides analysis of smart grid technology costs, concepts, drivers and components. It provides insights relating to the most innovative technologies and potential areas of opportunity for manufacturers. Examination of the key smart grid technologies costs is done along with identifying key trends shaping the market, as well as an evaluation of emerging trends that will drive innovation moving forward.


The Smart grid or Intelligent grid encompasses a range of technologies that are being used to add intelligence to the electricity grid at transmission and distribution levels as well as behind the meter in business and domestic environments. Within smart grid, a set of key technologies have evolved to form the basis for smart grid deployment. The most important of these is a communications network that runs alongside the electricity delivery network and allows intelligent devices that are connected to the system to communicate with one another and exchange data. These networks can include a range of different wireless and wired technologies. Software agents that carry out intelligent tasks across the network are another important development. Meanwhile three areas of the smart grid are emerging as the most dynamic today, smart meter integration into home and business networks, distribution system management and renewable integration.


Smart meters are digital replacements for traditional electromechanical meters which can provide a much more sophisticated level of service including recording consumption at time stamped intervals as short as 15 minutes. In order for smart meters to be effective they must be hooked up to a communications network that allows them to pass data to a control centre. With this facility, meter reading can take place remotely, reducing utility costs significantly. Other facilities such as power quality monitoring, theft identification and outage notification can all take place remotely too. Smart meters are intelligent devices and their intelligence can be utilised as controllers for the network of electricity consuming devices beyond the meter. Simple demand management can be implemented as well as more sophisticated strategies based on the use of software agents operating within the smart meter. Agents can be used to manage and integrate local generation such as rooftop solar photovoltaic units and energy storage such as batteries. The rollout of smart grid is advancing rapidly in Europe and the USA. Elsewhere progress is slower but programmes are starting in many regions of the world.


The introduction of distributed generation, particularly renewable and beyond the meter generation, is changing electricity distribution systems from passive deliverers of power from the transmission system to the consumer into systems that must be actively balanced. This is making the job of distribution system operators much more complex. Smart grid technologies can assist in distribution system management with a range of tools and technologies. At the same time is will provide new opportunities for distribution system operators to provide additional services. Tools for network balancing and congestion management will be critical to the operation of active distribution networks. In coming years this will extend to the management of electric vehicle charging networks and charging strategies. Meanwhile technologies such as integrated Voltage/VAR (volt-amperes reactive) control will help improve stability of distribution feeder lines and allow them to operate at the lowest voltage, increasing efficiency. Sensors and disconnectors can be used together to locate and isolate faults and new automation technologies will be able to assist in the integration of distributed and renewable generation into the distribution grid.


The integration of renewable generation sources into all levels of the grid is becoming one of the most pressing tasks facing all system operators with renewable penetration levels set to rise to 20% or 30% in many parts of the world before the end of the decade. Smart grid technologies will play a key role. At the transmission system level, integration of weather forecasting is important and the development of near real-time markets will enable better use of renewable resources when they are available. As renewable penetration levels increase, the inertia of the grid decreases so the grid becomes more dynamic and requires faster sensor and monitoring equipment and faster means of intervention provided by smart technologies. Energy storage is vital at all levels of the system to make management of variable renewable output more effective. Meanwhile the development of the distribution grid to allow the dispatching of all forms of generation at this level, and their participation in the market, will assist with integration. Other tools such as virtual power plants and micro grids will form important building blocks too.


The smart grid comprises a massive variety of technologies and service which, when welded together, create the entity that is now called a smart grid. The diversity of these technologies and the range of choices available means that no two smart grids will be unique, making it difficult to generalize on costs. The best that can be achieved is to cost individual projects or provide some very general average costs. In order to evaluate any smart grid project these must then be compared to the benefits that will accrue from the introduction of the smart grid and in order to quantify this, the benefits must be costed too and a benefit to cost ratio derived. This usually forms the basis for a business case. In general these analyses have shown that the smart grid benefits outweigh the costs by a significant margin. However conditions vary from region to region and in the EU some nations found the cost-benefit ratio negative for smart meters. Meanwhile the absolute costs suggest that the cost of building a smart grid will be in the tens to hundreds of billions of dollars - depending on size -- for most advanced nations.


The smart grid has evolved to meet a series of demands that are being placed on the electricity sector by such factors as renewable integration, electric vehicles, the necessary management of future distribution systems to accommodate generators as well as consumers and the need to improve service and power quality while reducing costs. These drivers will necessitate the implementation of many aspects of the smart grid over the next one to two decades. Many early deployments will revolve around smart meters because the benefits to be gained from these are usually easy to quantify. However once such deployment starts, the systems established can be exploited to introduce other smart grid services such as distribution and substation automation. Development of the widest range of smart grid services will evolve in advanced economies first. Elsewhere deployment will generally be slower, hampered partly by finance and partly by poor infrastructure. Meanwhile opportunities will be spread across a whole range of sectors including network and infrastructure, computer hardware and software, specialist sensor and smart grid hardware makers and installation and service companies.

Complete report is available at http://www.reportsnreports.com/reports/298046-the-future-of-the-smart-grid-2014.html

Order a copy of The Future of the Smart Grid 2014 market research report at http://www.reportsnreports.com/Purchase.aspx?name=298046  


Ritesh Tiwari
TX, Dallas North - Dominion Plaza,
17304, Preston Road,
Suite 800, Dallas 75252
Tel: +1-888-391-5441
[email protected]

Suggested Articles

Iowa State University researchers are working with NSF grant

Brain Corp. reported a sharp increase in autonomous robot usage in 2Q

Nvidia DGX accelerators helped train system from 150,000 chest X-rays with inference results in less than a second