Choosing The Right Microphones For Precision Measurements

Sensors Insights by David Mathew

Like all technological devices, loudspeakers, headphones, ear buds, MEMS speakers, sonar emitters and police sirens need to be measured and tested, both in design and in production. Further, products that make any noise at all (motors, airplanes, wind turbines, coffee makers, HVAC) are often measured for safety or environmental impact, or are continuously monitored, listening for signature acoustic signals that indicate correct performance, or failure.

The sensors required to accurately acquire the acoustic signals for test and evaluation are not the rock-n-roll mics a drummer has arrayed around his kit. A wide range of measurement microphones from a number of manufacturers has existed for many years, with a special solution for every acoustic test need.

For your garage band
For your garage band
For precision measurements
For precision measurements


Sponsored by Infosys

Infosys positioned as a Leader in Gartner Magic Quadrant for IT Services for Communications Service Providers, Worldwide 2020

The Gartner Magic Quadrant evaluated 12 vendors and Infosys was recognized for its completeness of vision and ability to execute.
Infosys leverages its global partner ecosystem, CSP-dedicated studio, design tools, and 5G Living Labs to boost service delivery. Innovative solutions such as the ‘Infosys Cortex2’ are driving business value for CSPs.

A measurement microphone is like an ordinary microphone in the superficial features: it is typically tubular, with a sensor at one end and a connector at the other, and the sensor itself is a lightweight diaphragm that is excited by changes in air pressure, responding in a way that can produce an electrical signal. But at this point the two microphone types diverge: you won’t see a singer’s wireless mic measuring loudspeaker drivers in an anechoic chamber, and you won’t see a comedian using a measurement microphone for the mic drop at the end of his routine.



Measurement microphones are optimized for superior performance in one or more of these characteristics: frequency response, frequency range, self noise, maximum level, and distortion. Further, some are designed to be robust in harsh environments, or to have characteristics that closely match in an array application. Microphone sensitivity and frequency response are very stable over time. A measurement microphone is typically shipped with a calibration table or chart documenting its performance.

A typical measurement microphone calibration table.
A typical measurement microphone calibration table.



If you've been used to using sensors that are Transducer Electronic Data Sheet (TEDS) enabled, you'll be pleased to know that most modern measurement microphones carry identification and calibration information as TEDS data.

Frequency Response: Typical measurement microphones are specified as ± 2 dB from 5 Hz to 20 kHz, but some models have usable response as low as 0.07 Hz, or as high as 140 kHz.

Low Noise: Most measurement microphones have a noise floor of about 20–40 dBA, but specialized 1" models can spec a noise floor as low as –2.5 dBA.

Maximum Level : For measurement microphones, 3% THD is considered overload. Typical measurement microphones might overload at 160 dB; specialized models will not overload until 184 dB or more.


Sensor Design

A number of methods have historically been used to convert sound pressure to an electrical signal:

  • piezoelectric, using a crystal attached to a diaphragm;
  • variable resistance, using packed carbon granules in a small container, attached to a diaphragm;
  • dynamic, using a magnet and a coil to convert diaphragm movement to a current; and
  • variable capacitance, where the diaphragm itself is one side of a capacitor, converting the movement of the diaphragm into a voltage.

As it turns out, the capacitive method will, in most applications, provide the most sensitive microphones, largely due to the low diaphragm mass that this method makes possible. A survey of measurement microphones over the past 50 years reveals wide use of capacitive microphones. In microphone circles, capacitive microphones are often called condenser microphones, and that is the term we will continue with here.

The one exception is an application where the sound levels are very high, such as near a blast or explosion. In this case, a piezoelectric measurement microphone is the correct choice.


Powering Condenser Microphones

A dynamic microphone can simply be connected via a shielded cable to an appropriate downstream amplifier and put to work. Condenser microphones, however, require more support:

  • The capacitive sensor element requires a polarizing voltage.
  • The impedance of the sensor element is very high; consequently, the signal current is so small that it must be amplified at the source before it is swamped by noise. Condenser microphones always have a preamplifier either built into the microphone body, or connected directly to the microphone sensor capsule.

Prior to the introduction of solid state amplifiers, the preamplifier in a condenser microphone was of a vacuum tube (valve) design. These microphones required custom power supplies and multi-conductor cables that provided the capacitor polarizing voltage and also plate voltage and filament current for the tube.

Today, measurement microphone preamplifiers are solid state and have modest power requirements. Depending upon applications, some microphones are externally polarized and require a 200 V polarizing voltage; many other designs are pre-polarized, with an electret capacitor as the sensor element, and require only preamplifier power. Early electrets were not suitable for high-performance applications, but modern electret microphones offer excellent specifications and long-term stability.


Diaphragm Size

Measurement microphones are offered in four nominal diaphragm sizes: 1", ½", ¼" and 1/8" inch. Generally speaking, the smaller the diaphragm, the greater the self-noise, the higher the frequency response, and the higher the maximum level. Most general applications are satisfied with ½" measurement microphones.


Directional And Sound Field Characteristics

Engineers with some experience in sound amplification or recording might be familiar with microphone directional patterns such as cardiod, figure of eight, shotgun and so on. These characteristics are accomplished by modifications to the basic diaphragm element, such as acoustic ports, additional diaphragms, or interference tubes.

Measurement microphones, on the other hand, are omnidirectional, without modifications for directionality. Measurement microphones are optimized for one of three acoustic applications: measuring sound pressure, measuring incident sound from one direction in a free-field (anechoic) acoustic space, and measuring sound that may arrive from any direction (random incidence) in a diffuse-field acoustic space.


Effect Of Measurement Mics On Incident Sound Waves

The mere presence of a microphone in an acoustic space disrupts the sound pressure wave as it encounters the microphone. The wave reflects from and diffracts around the sensor element to varying degrees, dependent upon the dimensions of the microphone and the frequency and angle of incidence of the sound wave. This effect is avoided in the first case below, the pressure microphone.

Pressure microphone
Pressure microphone


A microphone’s pressure response is flat when its presence does not disrupt the pressure wave. This occurs when the microphone is not in the sound field, but is a component of the barrier containing the sound field. Applications include flush mounting within an acoustic coupler, or flush mounting on a wall or barrier.

A free-field microphone is compensated to produce a flat response when used in an anechoic space where the sound waves are arriving from one direction. Applications include loudspeaker testing, microphone testing, evaluations and monitoring of sound-emitting equipment, and sound-level meters. The sound field must be free of reflections, such as an anechoic chamber or use out-of-doors.

Free-field microphone
Free-field microphone


A diffuse-field microphone is compensated to produce a flat response when used in a reverberant space such as a church, a concert hall, a room, or an aircraft or automobile cabin. Applications include room tuning, impulse-response testing, and ambient industrial or environmental noise evaluation.

Diffuse-field microphone
Diffuse-field microphone


Microphone arrays

Some applications require a geometric array of two or more (sometimes many more) matched microphones to capture temporal, directional and phase information for mathematical analysis. Array microphones are typically of the free-field type, with careful attention paid to close phase-matching among the microphones. Because a large number of microphones may be required, array microphones are usually of a general-purpose (and therefore less expensive) design.



Measurement microphones are available from a number of sources:


About the author

David Mathew is Technical Publications Manager and a senior technical writer at Audio Precision in Beaverton, Oregon. He has worked as both a mixing engineer and as a technical engineer in the recording and filmmaking industries, and was awarded an Emmy for his sound work in 1988.


Related Stories

Ultra-low power voice processing and MEMS microphone circuitry enables sound detection and keyword recognition in a miniaturized single package.

Popular Mic Delivers More Stable Acoustic Measurements

Quiescent-Sensing MEMS Mic A First For Consumer Products

Suggested Articles

The overall data center system matters more than the CPU to CIOs, but investors responded poorly to Intel’s lower data centric chip sales

The world’s largest chipmaker saw a 47% decline in data center sales to enterprise and government, even as it forecast a full year 2020 record of $75B

Working with Jacoti of Belgium, Qualcomm wants to make earbuds recognize the hearing anomalies of users.